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the a electrons dominate and generate delocalized structures. The 
enforced delocalization of *• electrons is the origin of the aromatic 
properties of such ring systems. In five-membered heterocycles 
with six ir electrons, the general trends are similar, but no dom­
inance of either a or ir part can be found. The equilibrium 
structure is a compromise between localized and delocalized 
structures, but some delocalization remains. The aromaticity is 
consequently less pronounced. Nonaromatic and antiaromatic 
rings prefer localized structures, where the antiaromatic com­
pounds are more localized than the nonaromatic compounds. This 

The extended Huckel (eH) method1 has been shown to be 
successful in rationalizing many structural features found in 
solid-state chemistry. Questions of unusual coordination envi­
ronments, metal-metal bonding, patterns of bond breaking or bond 
formation, and site preferences in materials that range from in-
termetallic alloys to halides have been studied by eH methods. 
There are several good review articles that summarize these re­
sults.2 

In this paper we show that a technique which incorporates 
Huckel or eH calculations can be used in understanding strong 
antiferromagnetic spin-spin correlations. This approach is based 
on the work of many groups who have found a remarkable co­
incidence between molecular orbitals models and the spin Ham-
iltonians generally used in studies of ferromagnetic and antifer­
romagnetic systems.3 The methods that have been used vary from 
Lie group and quasi-spin approaches, Rumer diagram techniques,4 

Pariser-Parr-Pople or Hubbard models and quantum Monte Carlo 
simulations,5 effective Heisenberg Hamiltonians,6 and the 
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is expressed in a minimum of the it curve and a maximum of the 
a curve at equilibrium. Finally, the removal of T electrons can 
cause the iz curve to revert its trend from a preference for a 
localized to a preference for a delocalized structure. The properties 
attributed to aromaticity definitely depend on the it electrons and 
their delocalization, but the origin of delocalized structures in 
neutral ring compounds is due to the a electrons. 
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Gutzwiller approximation.7 Although these models are technically 
involved, the results we will use in this work are quite simple. 
Indeed, one of the goals of this article is to recast the findings 
of these various workers in a form that can readily be used by 
chemists who are familiar with molecular orbital (MO) theory 
but who have never performed, for example, a quantum Monte 
Carlo simulation. We illustrate the utility of our technique by 
studying the antiferromagnetic (AF) ordering of KCuF3

8 and 
La2CuO4

9 and the spin-Peierls distortion.10 
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The Projection Operator Hiickel Method 
The method is simply illustrated by considering the ir atomic 

orbitals of 1, butadiene, where the individual orbitals are labeled 
a through d. 

b d 

A/ 
a c 

The two lowest energy Hiickel molecular orbitals are 4>0 and 
0.. 

00 = 0Oaa + 00b*3 + 0OcC + cfrotd = 
0.372(a + d) + 0.602(b + c) 

01 = 0laa + 0lbD + 01cc + 0Id^ = 
0.602(a-d) + 0.372(b-c) (1) 

The Huckel ground state, * H Q. 'S therefore eq 2, 

*HO = i0o+</>i+0o>ri (2) 

where #,* are the up-spin and down-spin forms of <£,• and where 
the outside bars of |0o

+0i+0o~0f I represent the formation of a 
Slater determinant. 

We now consider that portion of ^Ha where there are an equal 
number of electrons at each site. For instance, we calculate the 
portion of ̂ m where there are up-spin electrons on a and b and 
down spin electrons on c and d. We call this configuration 
|a+b+c.d. | . 

<|a+b+c_d_|^H0> 
0o« 
00b 

01« 

01b 

00c 

0Od 

01c 

0ld 
0.05 (3) 

In a similar manner we may calculate the components of * H o f° r 

all other configurations where there is one electron at each site. 
There are five other such configurations, i.e., |a_b_c+d+|, |a+b_c+dj, 
|a.b+c.d+|, |a_b+c+d.|, and |a+b_c_d+|. 

In other words, we are projecting ^ H 0 onto a space where there 
are a fixed number of electrons at each site. We call this projection 
operation P. 

P*m = 0.05{(a+b+c_d_| + |a_b_c+d+|) -
0.25||a+b_c+d.| + |a.b+c.d+ |) + 0.20| |a.b+c+d.| + |a+b_c_d+|} 

(4) 

The crux of our method is the comparison of PVm and *He where 
*H e is the ground of the AF Heisenberg Hamiltonian of eq 5. 

HHe = -2--/ijSVSj 
J for i and j that are bonded atoms,) 
0 otherwise ) (5) where J, • • • { 

Such Hamiltonians have proven to be useful for solid-state and 
inorganic clusters of magnetic materials" as well as for unsatu­
rated hydrocarbons.4'6,12 In the case of the ir orbitals of butadiene 
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Figure 1. Spin-spin correlations for butadiene, (a) We show the C(iJ) 
calculated by the POH method. We have assumed all /S-interactions are 
of equal magnitude. In (i) we list C(aJ) while in (ii) we list C(bJ), see 
1. (b) The equivalent C(iJ) calculated from the spin Hamiltonian. Note 
that both methods place a strong spin-spin correlation across the double 
bonds. This is especially clear in (aii) and (bii). 

Table I. Comparison of the Size of H 

dimension 
no. atoms of HHtl 

4 4 
10 10 
18 18 
26 26 

HOckel a n d "Heisenberg 

dimension of HHt 

Sz = O 
manifold 

6 
252 

48620 
10400600 

singlet 
manifold 

2 
42 

4862 
742900 

the spin operators are for the spin-'/2 electrons and *H e is given 
in eq 6. We have used a normalization constant in (6) which 
*H e = 0.07||a+b+c_d_| + |a .b.c+d+ | | -

0.25||a+b.c+d_| + [a_b+c_d+|} + 0.18(|a_b+c+d_| + |a+b.c.d+ | | 
(6) 

allows direct comparison to the P^m °f ecl 4- It may be seen 
that ^He a n d P^m a r e rather similar. Our special interest here 
is in calculating spin-spin correlation terms, i.e., the degree to 
which the spin direction at atom i is correlated to the spin direction 
at atom j . We call the spin-spin correlation for these two atoms 
CVJ). 

C ^ (7) 
<*H.I*H.> 

In the projection operator Huckel (POH) method we approximate 
CVJ) by eq 8. We compare CVJ) to C(iJ) for 1 in Figure 1. 

4<*H a |PSwSy>|*Ha> 

It may be seen that the approximation is a good one.7 The work 
described in ref 4-7 has shown that the method works well for 
systems with half-filled valence bands that are of alternant type 
geometry (i.e., contain only even-membered rings). It works 
especially well in the absence of rings. 

The advantages of POH are 2-fold. The first is numerical. In 
Table I we compare the dimensions of the Huckel to the Heis­
enberg Hamiltonian. It may be seen that unless additional sym­
metries exist it becomes quite difficult to calculate Heisenberg 
Hamiltonians with more than 24 spin-sites.13 The POH allows 
one to calculate up to (on a VAX 2000 workstation) 28 spin sites. 

(13) (a) Oitmaa, J.; Betts, D. D. Can. J. Phys. 1978, 56, 897. (b) Alex­
ander, S. A.; Schmalz, T. G. J. Am. Chem. Soc. 1987,109, 6933. (c) In the 
POH method, the controlling factor is that one actually generates an ap­
proximate * H e . It will therefore never be the best numerical method for 
finding properties of ¥ H e . 
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Only quantum Monte Carlo methods allow larger systems (up 
to 100 spin-sites).5 The second advantage is in the case where 
not all bonding interactions are equivalent. It is quite difficult 
in general to calculate the /y's of eq 5. The Hiickel or extended 
Hiickel Hamiltonian is very easy to calculate with use of the 
Wolfsberg-Helmholtz14 approximation. There are limitations to 
the method. The POH method does not include every type of 
magnetic interaction. For example, the 90° cation-anion-cation 
ferromagnetic effect has not been incorporated.15 Therefore, the 
POH method is useful on systems where the Huckel /8 and the 
on-site repulsion U parameter (of the Hubbard model) are the 
dominant sources of the magnetic ordering. Generally though, 
the POH correlation effects when they do exist lead to very strong 
antiferromagnetic coupling. They are furthermore the only source 
for strong antiferromagnetic coupling. We therefore limit our 
study of AF ordering to systems with high Neel temperature, or 
in the case of one- or two-dimensional systems, systems with 
exchange constants near or exceeding room temperature. 

A-Rings 
Rings of «-spin-'/2 sites, such as the 10-ring compound 2 provide 

an introduction to the utility of the POH method. It may be 
viewed as a model representation of the 10ir electrons in the cyclic 
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unsaturated hydrocarbon Ci0Hi0. In Figure 2, we compare C\ij) 
for the Heisenberg Hamiltonian to C(JiJ) based on the POH 
method. Such comparisons have previously been reported.5,7 It 
may be seen that the POH method accurately predicts the true 
spin-spin correlation. In Figure 2b we show C(JiJ) for the 26-ring. 
It is difficult to directly compare our result here to the actual spin 
Hamiltonian C\ij) as the spin Hamiltonian involves diagonalizing 
a 1 X 10* dimensional Hamiltonian. It is interesting to note that 
our results resemble Hirsch et al.'s5 results on the Hubbard model 
using a quantum Monte Carlo simulation method. 

KCuF3 

The KCuF3 system is a tetragonally distorted perovskite.8a-b The 
distortion is due to the Jahn-Teller instability of octahedral Cu 
d9 which reduces the Cu site symmetry from Oh to Dlh. We 
illustrate this structure in Figure 3. The magnetic structure of 
KCuF3 is well characterized by single-crystal neutron diffraction 
and magnetic susceptibility measurements.16 KCuF3 is composed 
of linear strands of Cu that have a strong AF intrachain isotropic 
exchange constant of J = -190 K. These strands are shown in 
Figure 3. Between these chains there are much weaker ferro­
magnetic couplings and the system orders antiferromagnetically 
at 38 K. This magnetic structure is well understood theoretically 
by use of the Goodenough-Kanamori rules.15 We show here that 
the antiferromagnetic exchange constants may also be understood 
via the POH method. We note the two methods use very different 
viewpoints: the former technique relies on valence bond ideas and 
super-exchange, while the latter one uses MO ideas. 

In Figure 4 we show the MO diagram at T (k = (0,0,0)) where 
we have chosen as our unit cell a pseudo-cubic Cu8F24 fragment. 
We have treated the potassium atoms in a Zintl fashion as mere 
electron donors. The Fermi level lies in the middle of the highest 
lying Cu d-orbital band. This d band has been split into two by 
the Jahn-Teller distortion. In Figure 3 we represent these orbitals 

(14) Wolfsberg, M.; Helmholz, L. J. Chem. Phys. 1952, 20, 837. 
(15) (a) Goodenough, J. B. Magnetism and the Chemical Bond; J. Wiley: 

New York, 1963. (b) Kanamori, J. J. Appl. Phys. 1960, 31, 14S. (c) 
Kanamori, J. Prog. Theor. Phys. 1963, 30, 275. 

(16) (a) Hirakawa, K.; Hirakawa, K.; Hashimoto, T. J. Phys. Soc. Jpn. 
1960,15, 2063. (b) Okazaki, A.; Suemune, Y. J. Phys. Soc. Jpn. 1961, 16, 
671. (c) Hutchings, M. T.; Samuelsen, E. J.; Shirane, G.; Hirakawa, K. Phys. 
Rev. 1969, 188, 919. (d) Ikeda, H.; Hirakawa, K. /. Phys. Soc. Jpn. 1973, 
35, 722. (e) Hirakawa, K.; Kurogi, Y. Prog. Theor. Phys. Suppl. 1970, 46, 
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0.60 

Figure 2. Spin-spin correlations for (a) a 10-ring and (b) a 26-ring. In 
(a) the broad line is the exact spin Hamiltonian result and the thin line 
is from a POH calculation. For both (a) and (b), j refers to the atom 
which is a y'th nearest neighbor to the "zero"-atom, i.e., first nearest 
neighbor spin-spin correlation is C(0,1) and C(O1I) ~ -0.60. 

• Fluorine 

O Copper 

Figure 3. The tetragonal structure of KCuF3. The Cu atoms have four 
shorter bonds of 1.89 and 1.96 A and two longer 2.25-A bonds. The four 
shorter bonds are all shown with an equivalent broad line and the longer 
ones by thin solid lines. Note that the Cu atoms are approximately 
square planar and that the square planes are oriented in two different 
ways. 

as either x2 - y2 or x2 - z2 orbitals. These forms would be exactly 
correct were the distortion to have made a Dih site symmetry at 
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Figure 4. Molecular orbital diagram at T for an eight Cu atom unit cell 
of KCuF3. At the top, the unit cell used is shown as the large cube. The 
eight inequivalent Cu atoms are also shown there. The calculation was 
done at T so all unit cells are in phase with each other. We show the MO 
levels of all the d-orbitals. We show the d-portion of the MOs for the 
eight highest energy d-orbitals. The bottom four are the Tilled orbitals 
while the top four are the unfilled ones. Note that for the four filled 
orbitals, the vertical lobes of the d-orbitals are all in phase. This is what 
is responsible for the experimentally found AF ordering. Extended 
Huckel parameters used are for Cu 4s (H11 = -11.4 eV, f = 2.2), Cu 4p 
(Hu = -6.06 eV, f = 2.2), Cu 3d (H11 = -14.0 eV, f, = 5.95 (0.5933), 
f2 = 2.30 (0.5749)), F 2s (H11 = -40.0 eV, f = 2.425), and F 2p (Hn = 
-18.1, f = 2.425). The K atoms were treated by using the Zintl concept 
as mere one-electron donors. No K-orbitals were used. 

the copper atom positions. As the distortion leads to a Z)2* site 
symmetry, the orbitals are more correctly 0.677JC2 - 0.734_y2 + 
0.057z2 and 0.677*2 - 0.734r2 + 0.057^2 (the largest deviation 
from these values being 0.59Ox2 - 0.784^2 + 0.194z2). The actual 
form of the orbital, though, is not the most essential feature to 
our analysis. Rather, it is that to a good approximation (see values 
above) the eight MO's that span £ F are all linear combinations 
of the same eight atomic orbitals. We can therefore view this 
system as a one orbital per atom and a one electron per atom 
system. We may therefore reduce the extended Huckel calculation 
to a one orbital per atom model by means of an effective Ham-
iltonian approach. We have described this technique elsewhere.61 

The effective Hamiltonian approach results in eight molecular 
orbitals whose energies exactly mimic the energies of the eight 
orbitals that span the Fermi level in Figure 4. The matrix for 
this system uses as a basis set the effective localized atomic orbitals, 
denoted a-h in Figure 4. We now calculate C(iJ) for these eight 
atomic orbitals. We show C(aJ) in Figure 5. It may be seen 

1.0 

- 1 . 0 

/ 

.n/\ o.oVT o.o 
/T |oo/[ I i . i / 

l-i->.i/T >d/T >•« 

A M 
,.W-
{ 0.0, 

/ 

-I 

/ 
O I V 
7J7~~{7 
f , V 
•*-b 

Copper 

Figure 5. C(iJ) for the eight Cu atom pseudo-cubic KCuF3 cell. For 
C(ij) i is the corner atom of the cell shown. Hence at the corner of the 
large cube all C(iJ) values equal 1 due to translational symmetry. 
Spin-spin correlation occurs only in the z direction. The orientation of 
the cube is the same as that in Figure 4. 

1.000 

0.000 

0.000 

1.000 

Copper 

Figure 6. C(Ij) for a twelve-atom KCuF3 cell. The unit cell is indicated 
by the dotted lines. The orientation of the square-planar CuF4 fragments 
is the same as in Figures 3 and 4. The parameters used are given in the 
caption of Figure 4. 

that atom a is strongly correlated to one of the other seven atoms. 
Indeed, this is the direction of the strong antiferromagnetic 
coupling in KCuF3. We show a similar calculation on a larger 
Cu12F36 cell in Figure 6. The local antiferromagnetic ordering 
is clear. It is also clear that the POH method does not lead to 
a prediction of the weak ferromagnetic coupling between chains. 
This is a natural limitation of the method. We have not included 
the effect of two electron exchange integrals that are known to 
be responsible for this effect.15 

La2CuO4 

Stoichiometric La2CuO4 is an antiferromagnet at low tem­
perature.17 It has a Neel temperature of 240 ± 10 K. This 
well-known structure contains sheets of vertex sharing octahedra.9 

In the center of these octahedra are copper atoms. These sheets 
are illustrated in Figure 7. This sheet structure undergoes a phase 
transition at 533 K. Above this temperature the phase is tetragonal 
and the sheets are planar while below this temperature the 

(17) (a) Vaknin, D.; Sinha, S. K.; Moncton, D. E.; Johnston, D. C; 
Newsam, J. M.; Safinya, C. R.; King, H. E., Jr., Phys. Rev. Lett. 1987, 58, 
2802. (b) Yang, B. X.; Mitsuda, S.; Shirane, G.; Yamaguchi, Y.; Yamauchi, 
H.; Syono, Y. J. Phys. Soc. Jpn. 1987, 56, 2283. (c) Evain, M.; Whangbo, 
M.-H.; Beno, M. A.; Geiser, V.; Williams, J. M. J. Am. Chem. Soc. 1987, 
709,7917. (d) See also the AF ordering in YBa2Cu3O6+1 in: Tranquada, J. 
M.; Cox, D. E.; Kunnmann, W.; Moudden, H.; Shirane, G.; Suenaga, M.; 
Zolliker, P.; Vaknin, D.; Sinha, S. K.; Alvarez, M. S.; Jacobson, A. J.; 
Johnston, D. C. Phys. Rev. Lett. 1988, 60, 156. 
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Table II. Spin-Spin Correlation for the Square Lattice Sheet of Cu Atoms in La2CuO4 

neighbor 

1st nearest neighbor 
2nd nearest neighbor 
3rd nearest neighbor 

Cu-Cu 
distance, A 

3.82 
5.40 A 
7.64 

tetragonal 

-0.36 
(+0.25) 

10 Cu atom cell" 

orthorhombic 

-0.36 
(+0.25) 

1st 
nearest neighbor 
interactions only 

-0.36 
(+0.25) 

18Cu 
atom cell 

-0.39 
+0.19 
+0.16 

22Cu 
atom cell 

-0.36 
+0.20 
+0.16 

26Cu 
atom cell 

-0.36 
+0.19 
+0.15 

'For the 10 atom cell the 2nd nearest neighbors are also 3rd nearest neighbors. Therefore, the C(iJ) values are inflated. 

a 

Figure 7. A single octahedral sheet of La2CuO4: (a) tetragonal form and 
(b) orthorhombic form. The copper atoms are at the center of the 
octahedra. 

structure becomes orthorhombic and the sheets are buckled. As 
in KCuF3, the copper have a d9 electron configuration and these 
metal atoms therefore Jahn-Teller distort so as to have four short 
Cu-O bonds of 1.91 A and two longer 2.46 A bonds in La2CuO4. 
The long Cu-O bonds are parallel to one another, and therefore 
all the highest lying d-orbitals are oriented in the same fashion. 

As Figure 7 shows, the connectivity of the highest lying d-
orbitals is identical with those of s orbitals lying in a two-di­
mensional square lattice. We consider the molecular orbital 
diagram for the Cu10O40 unit cell shown in Figure 8. By our POH 
method this leads to estimates for the spin-spin correlation that 
are given in Table II. We show in Table II the spin-spin cor­
relation values between atoms and their first, second, and third 
nearest neighbors. We have also performed this calculation on 
T for the unit cells shown in Figure 9. Of particular interest in 
Table II is the lack of any effect in C(iJ) due to second nearest 
neighbor interactions. The columns for the 10-atoms Cu cell of 
Figure 8 show that it makes no matter if non-nearest-neighbor 
interactions are kept. We have therefore carried out the other 
calculations of Table II keeping only nearest-neighbor interactions. 
Finally, we have considered the effect of the orthorhombic dis­
tortion. As Table II shows the effect of this distortion also does 
not change the C(IJ) values. 

The results in Table II clearly show that the spin alternation 
of the Cu sublattice present in La2CuO4 is that of 3. 
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Figure 8. A molecular orbital diagram for a 10-Cu-atom cell. The 
extended Hiickel parameters for the Cu atom are given in the caption 
of Figure 4. For O 2s H11 = -32.3 eV and f = 2.275, and for O 2p H11 
= -14.8 eV and f = 2.275. The La atoms were considered to be mere 
three-electron donors and were not included in the calculation. 

22 Cu atoms 
cell 

26 Cu atoms 
cell 

18 Cu atoms 
cell 

Figure 9. The 18-, 22-, and 26-Cu-atom cells. 

Spin Peierls Distortions 

Actual chemical systems that exhibit spin-Peierls distortions 
were first discovered 15 years ago.10 The known examples are 
generally planar organometallic or organic molecules that stack 
on top of one another.10 However, earlier theoretical work18 had 
already suggested that under suitable conditions a Peierls-like 
distortion could occur in infinite chains, even if the undistorted 
state did not correspond to a metallic material but rather a 
nonconducting magnetic material. In this work they considered 
spin Hamiltonians such as 

/ / (y ,y ) —212('AS2Z-S2/+! "*" J'StfSu-i) (9) 

where J and ./'are negative (i.e., AF) exchange parameters. These 
workers noted that if one considers the above Hamiltonian where 

(18) (a) Duffy, W., Jr.; Barr, K. P. Phys. Rev. 1968,165,647. (b) Pincus, 
P. Solid Stale Commun. 1971, 9, 1971. 
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-14.0F 

Lee 

CM 
CS 

Figure 10. The AF Heisenberg and POH ground state energies for a 
10-atom ring with bond strength alternation. The solid line is the POH 
approximation, and the dotted line is the true Heisenberg energy. The 
energy scale is set such that £ = O corresponds to the ferromagnetic state. 

J and J' are constrained such that J + J' equals a constant then 
the ground state of H(JJ^ has a maximum at J = J'. This energy 
maximum provides the driving force for the distortion. This then 
is the original theoretical underpinning of the spin-Peierls dis­
tortion. 

In this section we illustrate that the POH method can also be 
used to analyze the energies of the ground state of Hamiltonians 
such as that given in eq 9. In our comparison of *H a vs VHt we 
consider the Hiickel Hamiltonian 

Htftf) = -Z 0|*2/><*2f+il + 01*2/><*a-il + herm. conj. 

(10) 

It is a well-known result of the Hubbard model that in the limit 
of electron localization (the regime where spin Hamiltonians are 
truly valid) J and J' are proportional to respectively 01 and #'2. 
We can therefore establish a Heisenberg Hamiltonian like that 
given in eq 9 which corresponds to the HQckel Hamiltonian of 
eq 10. 

In Figure 9 we compare £H<! and E90n where 

£„, « < * H . W O | * H « > (H) 

(12) P̂OH = < * H i | W ( ^ 0 1 * H a > 

We consider a ring of ten atoms (as H(J,J') otherwise grows to 
a larger than 103 dimensional matrix). We have used as a con­
straint in our calculations that /3 + /S' is kept constant. In Figure 
10 we compare the energy of P^m

 t 0 t n a t °f the Heisenberg 
Hamiltonian as we vary the 0 in the Huckel Hamiltonian. It may 
be seen that the POH method provides a good approximation to 
the true ground-state energy. Due to the variational principle, 
it provides an upper bound. 

Nonalternant Systems 
In the previous examples we have restricted our attention to 

alternant systems," i.e., systems that do not contain odd-member 
rings. We mentioned earlier that the reason for this is that there 
exist odd-member-ring systems for which the correspondence 
between the projected operator Huckel and Heisenberg ground 
states is poor. Recently, some workers have shown that charge 

(19) Coulson, C. A.; Rushbrooke, G. S. Proc. Cambridge Philos. Soc. 
1940, 36, 193. 

Table III. Comparison of POH and Heisenberg Spin-Spin 
Correlation Functions for Fragments of System 4 

j 
-4 
-3 
-2 
-1 
O 
1 
2 
3 
4 
5 

C(OJ) for 5 
from POH 

-0.154 
-0.308 
-0.154 

1.000 
-0.154 
-0.308 
-0.154 
0.231 

C(OJ) for 
5 from 

Heisenberg 

0.037 
-0.628 
-0.061 

1.000 
-0.061 
-0.628 
0.037 
0.302 

C(OJ) for 8 
from POH 

0.063 
-0.074 
-0.561 
-0.055 

1.000 
-0.037 
-0.369 
-0.016 
0.047 
0.001 

C(OJ) for 
8 from 

Heisenberg 
0.139 

-0.036 
-0.478 
-0.159 

1.000 
-0.570 
-0.413 
-0.284 
0.155 

-0.240 

C(OJ)' for 
6 from 

Heisenberg 
0.067 
0.213 

-0.461 
-O.207 

1.000 
-0.207 
-0.461 
0.213 
0.067 

-0.224 
"The POH values for 6 are not listed as there is a degeneracy in the 

Huckel Fermi level for this system. 

transfer is an important problem in these systems.6 

We therefore, at first, will restrict our attention to a model 
nonalternant system in which charge transfer is minimized. We 
consider the system 4 for which every site is equivalent (hence 
no net charge transfer can occur although greater charge fluc­
tuation is possible20). A chemical example of this is the W atoms 
in WTe2. We consider that each vertex in 4 is the site of a single 

- AAAAAy -
4 

half-filled orbital. There is therefore one electron at each site. 
As the system is an extended solid we consider a unit cell of varying 
size. This is equivalent to the fragment within the solid approach.21 

Thus, 5 and 6 are both approximations to 4 representing re­
spectively eight- and ten-atom cells. Their respective symmetries 

are DAd and Did. In Table III we show the C(iJ)\ for these 
systems. The agreement between the POH and Heisenberg values 
is poor. For 5, a comparison of %Hc and PVm shows that 
(*He(5)|^|*Ho(5)> = 0. The former wave function is of 1B1 
symmetry, while the latter is of 1A) symmetry. We have called 
this change in ground state in an earlier paper a Hubbard tran­
sition.6 It is the molecular analogue of the Mott transition.24 

It is an interesting question as to whether 4 also undergoes a 
Hubbard transition. We have therefore compared ^H e and *H 0 
for the two low-symmetry systems 7 and 8. 

VSA AAAA/ 
7 8 

Using normalized PV m and *H e we find 

(*He(l)\P\*m(l)) = 0.852 

<*He(8)|/>|*Hu(8)> = 0.287 

(13) 

(14) 

(20) (a) Anderson, P. W. Mater. Res. Bull. 1973,8, 153. (b) Hirakawa, 
K.; Kadowaki, H.; Ubukoshi, K. J. Phys. Soc. Jpn. 1985,54, 3526. (c) Jullien, 
R.; Penson, K. A.; Pfeuty, P.; Uzelac, K. Phys. Rev. Lett. 1980, 44, 1551. 

(21) See: Burdett, J. K. Molecular Shapes; J. Wiley: New York, 1980; 
pp 271-275. 

(22) Mott, N. F. Proc. Phys. Soc. (London) 1949, A62, 416. 
(23) (a) Hay, P. J.; Thibeault, J. C ; Hoffmann, R. J. Am. Chem. Soc. 

1975, 97, 4884. (b) Estes, W. E.; Gravel, D. P.; Hatfield, W. E.; Hodgson, 
D. J. lnorg. Chem. 1978, 17, 1415. 

(24) Brec, R. Solid State tonics, 1986, 22, 3 and references therein. 
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It therefore appears likely that as the open chain grows infinitely 
long, the dot product tends to zero, i.e., 

<*„e(4)|/>|*HQ(4)> = 0 (15) 

This is compatible but is certainly not sufficient to prove that 5 
which is of "Z)./ symmetry may possess a Hubbard transition. 

Finally, we contrast our above results with our result on n-rings. 
For 2 we find 

<*„e(2)|/>|*Ho(2)> = 0.998 (16) 

If we recall that 2 and 8 are both ten-atom systems, we see the 
profound effect nonalternacy may have. For instance, one would 
suppose that systems like the single-strand one-dimensional chain 
and 4 would have very different metal-insulator transitions even 
though both are one-dimensional systems. This shows that the 
topology of the system is just as important if not more important 
that the dimneisonality. 

Conclusion 
Fifteen years ago Hay, Thibeault, and Hoffmann23 published 

a study on the exchange constants found in Cu11 dimers such as 
9 and 10, where L was a ligand such as a halide, hydroxide, or 

L—^Cu L—^Cu L .Cu O Cu 

L L L L L 

9 10 
alkoxide and 8 was a variable angle. Using a simple extended 
Hiickel method they were able to establish a relationship between 
8 and the sign of the exchange constant. /QU-CU 'S antiferro-
magnetic at 8 = 180° while /cu-Cu ' s ferromagnetic at 8 = 90°. 
In the 90° case they showed that there was no driving force for 
the formation of a singlet ground state and they therefore assumed 
that the electrons would follow Hund's rule and align in a parallel 
fashion. In this article we have shown that this same approach 
is also valid in solid-state systems. In the POH method, AF 
ordering is revealed by strongly correlated spin orientations. In 
the absence of such strong correlations we might assume ferro­
magnetic exchange (derived from direct exchange between 
localized orbitals with ligand contributions) can dominate. This 
is what happens in KCuF3. As in the earlier work24 on molecular 
systems the POH method has the defect of not predicting the 
absolute size of these AF exchange constants. This drawback is 
due to the exchange constants being approximately5"7 

J = -202/U (17) 

where /3 is the Hiickel interatomic hopping integral and U is the 
on-site repulsion. While /9 may be evaluated by a Hiickel cal­
culation, U cannot be. We see though that relatively small 0's 
(the band width of the highest lying d orbitals is 0.20 and 1.00 
eV for respectively KCuF3 and La2CuO4) can lead to reasonably 
large J values (near 200 K for KCuF3). More studies need to 
be carried out before an understanding of absolute J values can 
be obtained. 

In this article, we have given two examples of the interplay of 
spatial distortion and type of antiferromagnetic ordering. In the 
case of KCuF3 the cubic to tetragonal distortion is responsible 
for the AF ordering of that system. However, the tetragonal to 
orthorhombic distortion in La2CuO4 plays no discernable role in 
the La2CuO4 AF ordering. 

The final success of the POH method will certainly depend on 
the ability of the method to handle other more complicated 
systems. MnPS3 and FePS3 are ideal candidates for future study. 
These two systems are isostructural. Both contain a graphite sheet 
of transition-metal atoms, 11. However, in the two cases the 
reported orderings are different. MnPS3 has the ordering shown 
in 12 while FePS3 has the ordering shown in 11. As this example 

shows, even for alternant systems, the AF ordering is not always 
of one type. [One might imagine that 13 was the only logical AF 
ordering.] To study the systems the POH method will have to 
be successfully extended to more complex d-electron counts. 
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